Transitions Omicron subvariant and amplicon dropouts

Update Feb. 22, 2022

Bette Korber, Will Fischer, Hyejin Yoon, James Theiler cov.lanl.gov

Contents:

Slide 2:
Slide 3:
Slide 4:
Slide 5:
Slides 6-10:
Slides 11-13:
Slides 14-15
Slide 16

The global transition to BA. 2 (and historic variants of interest and concern) through mid-Feb, 2022
Transitions to BA. 2 by continent
Sampling history of Omicron variants by country showing BA. 1 and BA.1.1 transitioning to BA. 2
Sampling history of Omicron variants by USA state: BA. 2 is still rare in the USA, but consistently increasing. Slides illustrating the history of amplicon dropouts from Omicron and Delta Chimeric or recombinant sequences found in Omicron and Delta An alternative 3 amino acid insertion at Spike 214 in BA. 1 is common in some Southern Slavic nations. A new 3 amino acid insertion at $S 212$ in BA. 2 is rare but showing a modest expansion in Denmark

Global: 7977760 sequences

Both BA.1.1 and BA. 2 Omicron sublineages are increasingly sampled relative to the original form BA.1. Early reports suggest BA. 2 has different antigenic and phenotypic characteristics relative to BA. 1
Yamasoba... Sato, bioRxiv, doi.org/10.1101/2022.02.14.480335

Transitions by continent: BA. 2 is rapidly gaining ground, but is only recently sampled in the Americas

The BA. 2 Omicron sub-lineage is increasingly sampled and replacing

 other Omicron variants across the globe. Data: Feb. 22, 2022

The BA. 2 Omicron sub-lineage is still rare but increasingly sampled relative to other Omicron variants in states across the USA.

Data: Feb. 23, 2022

The table lists all US states where BA. 2 has been sampled ≥ 10 times in GISAID. The low p-values indicate BA. 2 is significantly increasing in sampling frequency relative to other Omicron variants, in 27/27 states, but not in the Northern Mariana Islands. The plot shows an example from Massachusetts, the state where BA. 2 has been most sampled*. In the plot, each point represents samples from a given day. The size of the dot indicates the number sampled that day, with dates along the x axis, the proportion of BA. 2 lineage sequences relative to other Omicron variants on the y axis.

* USA_Massachusetts

Amplicon Dropout and SARS-CoV-2 sequences
 As new variants arise among SARS-CoV-2 sequences, the mutations they carry can disrupt primer interactions and leave some parts of the full

 genome sequences unresolved; this situation will persist until new primers with superior performance can be adopted and incorporated into sequencing protocols. These adjustments will naturally have different paces in different laboratories.The unresolved sections are generally filled in with N's.

To enable reporting sequences in the critical weeks just as a new highly transmissible variant is detected and found to be expanding, in the earliest days of a new expansion many sequences will have long stretches of N 's. As people adapt their primer sets and incorporate sequencing strategies that better capture these regions, more complete forms of the variants become increasingly available over time.

The next two slides (6 and 7) illustrate how this scenario has played out with Omicron sequences.
Omicron carried so many mutations relative to earlier variants that the issue of amplicon dropout was exacerbated. However, this problem is not unique to omicron, and most new variants have presented similar initial sequencing challenges. We include a second example using Delta on slides 8 and 9 .

Implications of Amplicon Dropout for interpreting sequences:

1) For experimentalist scientists ordering reagents to explore the immunological and virological impact of mutational patterns carried by new variants of interest and concern, care must be taken to make sure that the sequence they are using actually reflects the common circulating form of the variant. Some bioinformatics sites have treated " N "s as ancestral states, and this can lead to an under-representation of amino acid changes in common amplicon dropout regions in newly emerging lineages. We have taken great care to avoid this problem in the variant representative sequences included in these LANL VOI/VOC representative sequence sets.
2) Amplicon dropout can result in artificial chimeric sequences, where a very rare variant in a sample (e.g. a low-level laboratory contaminant) is successfully amplified by primers that miss the targeted sequence. Such "chimeras" will include stretches of a distinct form embedded within the sequence. Examples of stretches of ancestral or Delta sequences within Omicron sequences can be readily identified, as the Omicron Spike is so distinctive; these are discussed in slides 10-14, and examples are included in our fasta files and spread sheet.

Amplicon Dropout Regions in Omicron sequences, full genome sequences grouped by sampling month

Each sequence is represented as a row of pixels.

- All 6878 sequences from November, when Omicron was first detected and beginning to expand, are included (lower panel).

10,000 Omicron sequences were randomly selected from the December and January GISAID sequences (middle panels).

- All 9,996 sequences sampled
in February and deposited in
GISAID by February 19 ${ }^{\text {th }}$ are shown.

Green indicates stretches of N's in each sequence, the common vertical patterns are shared amplicon dropouts across many labs.

Purple stripes indicate actual SNPs relative to the reference sequence, pink contiguous SNPs, brown deletions, and sea green insertions.

Complete sequences are sorted at the top of each month's sample. Note:
A higher proportion of complete sequences are available each month

- Note: Even the early complete sequences from November accurately captured the pattern of SNPS/indels common to the Omicron lineage.

Omicron mutations and dropouts by month (FULLORFS; max 10000 seqs/month)

month ending
2022-01-31

(9998 seqs)

Los Alamos
LoS Alamos

Amplicon Dropout Regions in Omicron, Spike gene expansion by sampling month

See slide 6 for a description.

Note the frequent Amplicon dropout regions in the RBD, and how the coverage frequency improves over time.

The drop out regions are also often associated with a chimeric stretches (detailed on slide 10). The chimeras are sequences with a strings of either ancestral base calls, or delta mutations.

Omicron mutations and dropouts by month (SPIKE; max 10000 seqs/month)

Amplicon dropout Regions in Delta sequences, full genome by sampling month March - July 2021

See slide 6 for a key.
Note:

- As with Omicron, a higher proportion of complete sequences are available each month, as the global transition to Delta was underway
- Again, even the earliest complete sequences from March accurately captured the pattern of SNPS/indels common to the Delta lineage.

Delta mutations and dropouts by month (FULLORFS; max 10000 seqs/month)

Amplicon Dropout Regions in Delta, Spike gene expansion by sampling month

Delta mutations and dropouts by month (SPIKE; max 10000 seqs/month)

Recombination and chimeric sequences

I. Recombination is an evolutionary mechanism used by coronaviruses

- It is possible that recombination between two distinct SARS-CoV-2 variants (e.g. Omicron and Delta) may occur within a host that is naturally co-infected. Thus, a natural recombinant form with selective advantage may be able expand in SARS-CoV-2.

II. There are two ways apparent recombination can arise in the laboratory

- If two variants are present in a sample, recombination can occur during PCR amplification, giving rise to recombinant sequences generated in vitro.
- If the dominant variant in a sample has a primer mismatch, a rare variant or low-level contaminant in the sample may be preferentially amplified, giving rise to a chimeric sequence that is an apparent recombinant.

III. It is important be aware of chimeric sequences in subsequent analyses.

- Chimeric sequences can impact conclusions based on phylogenetic analyses. Sometimes they will yield particularly long branches within a clade, sometimes they will form distinctive branches between the two clades representing the lineages from which the parents were derived. Either artifact can impact conclusions such as timing the origins of a lineage and tree-based estimates of positive selection.
- Common chimeric sequence forms could result in noisy estimates of mutational frequencies.
- If a natural recombination event was confirmed (for example, its sequence was confirmed and/or a recombinant lineage began to be transmitted and resampled in multiple geographic regions) it would be an interesting event in its own right, but could also impact phylogenetic analyses that assume no recombination.

[^0]
BA. 1 Chimeric sequences found >50 times among the 243,069 BA. 1 sequences

Count perc HD Mutation string relative to the ancestral form
13494155% [A67V, H69-, V70-, T95I, 142 D , V143-, Y144-

 $290.0 \% 20$ [A67V, H69-,V70-, T95I, G142D, V143-, Y144-, Y145-,

BA.1.1 Chimeric sequences among 211797 BA.1.1 sequences

 3280.2% [A67V, H69-,V70-, T95I, G142D, V143-,Y144-, Y145-,'N211-, L212I , +214EPE, G339D, R346K, S371L, S373P, S375F, N440K, G446S

 S477N, T478K, E484A, Q493R,G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N64K, D796Y, N856K, Q954H, N966K, L981F

 $780.0 \% 7$ [A67V, H69-,V70-, T95I, G142D,V143-, Y144-, Y145-, N211-, L212I, +214EPE, G339D, R346K, S371L, S373P, S375F,

BA.1.1 forms found >10 times carrying Delta signature mutations:

BA. 2 Chimeric sequences among 58780 BA. 2 sequences

$4733681 \% 0$ [T191, L24S, P25-, P26-, A27-, G142D,V213G,G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K]
 BA. 2 forms found over 10 times carrying BA. 1 signature mutations:
$340.1 \% 2$ [T19I,L24S,P25-,P26-,A27-, G142D,N211-,L212I,V213G, G339D, S371F, S373P, S375F,T376A, D405N, R408S, K417N,N440K, S477N, T478K, E484A, Q493R, Q498R,N501Y, Y505H, D614G, H655Y,N679K, P681H,N764K, D796Y, Q954H, N969K]
$170.0 \% 3$ [T19I, L24S, P25-, P26-, A27-, A67V, H69-, V70-, G142D,V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R,N501Y, Y505H, D614G, H655Y,N679K, P681H, N764K, D796Y, Q954H, N969K

CISAlD
Delta-lineage baseline Spike mutations:
T19R,T95I,G142D,E156-,F157-,R158G,L452R,T478K,D614G,P681R,D950N
Omicron BA. 1 lineage Spike baseline mutations:

These are the forms of Delta with stretches of Omicron sequences that were found more than one time within a distinct Delta Pango lineage. Purple are stretches of Delta, red of Omicron.

```
Pango designation N_Pango N perc HD [Spike mutation strings]
AY.43 1.0756 2 0.0% 7 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
AM,
B.1.617.2 
B.1.617.2 2013 2 0.1% 12 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,E554Q,D614G,H655Y,N679K,P681H,N856K,D950N,Q954H]
AY.100 1350 2 0.1% 6 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
AY.39 818 
AY.25 1152 2 0.2% 8 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D95ON]
AY.122 5732 6 0.1% 7 [T19R,A67V,H69-,V70-,T951,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
AY.3 1434 6 0.4% 7 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
AY.4 6536 7 0.1% 6 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
AY.103 4244 11 0.3% 7 [T19R,A67V,H69-,V70-,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N]
llo,
```



```
B.1.617.2 2013 5 0.2% 3 [T19R,T95I,G142D,V143-,Y144-,Y145-,E156G,F157-,R158-,L452R,T478K,D614G,P681R,D950N] Pango designation N_Pango N prec HD
```

Legend: This table is based on sequences sampled in the last 60 days, ending $2 / 14 / 2022$. Headings: Pango designation; N_Pango is the number of sequences in our QC'd Spike sequence alignment with the noted Pango designation; N is the number of sequences with exactly the specified mutational pattern found within the Pango lineage; "perc" is the percentage of the Pango lineage with the exact form that is specified; and HD is the Hamming distance from the sequence shown and the consensus form of the particular Pango lineage specified. Purple mutations are characteristic of the Delta lineage, red the BA. 1 Omicron lineage.

There were 162 additional distinct chimeric sequences with stretches of Omicron in Delta backgrounds that were only found once in a given Pango lineage set, in addition to the set of 17 that were found multiple times shown above.

There were no Omicron BA. 2 specific mutations found in Delta backgrounds.
T191,L24-P25-,P26-,A27S,G142D,V213G,G339D,S371F,S373P,S375F,T376A,D405N,R408S,K417N,N440K,S477N,T478K,E484A,Q493R,Q498R,N501Y,Y505H,D614G,H655Y,N679K,P681H,N764K,D796Y,Q954H,N969K

S 214 +GAR insertion form resulting from 2 mutations in BA.1 or BA.1.1, near 211-215. This distinctive form is common in many Southern Slavic nations

As of Feb. 24, 2022 there were 8,566 examples in GISAID.
Three views of the codon aligned nucleotide region of Spike

This altered insertion is found in
BA. $1>2,000$ and BA.1.1(with R346K) $>2,000$
Translation
210
TPINLVR_- DLPQ
TPI-IVREPEDLPQ
TPI-IVRGARNLPQ
TPI-IVRGARNLPQ
TPI-IVRGARNLPQ

LANL Alignment, amino acid changes N211-,L212I,+214GAR,D215N

CISAID

2) Los Alamos

This variant also introduces a frameshift in the nucleocapsid protein at amino acid 34 , where there is usually a 3 amino acid deletion in Omicron:

Stop codon

The high frequency of sampling of the S 214+GAR from in the Southern Slavic countries is consistent with founder effects or possible sequencing issue:

The S $214+G A R$ variant dominated the initial Omicron expansion in both Croatia and Slovenia, and was found both in
BA.1.1 and BA. 1 backgrounds. In Slovenia, these have been replaced by more conventional Omicron BA.1.1 and BA.1. forms.
It is possible that this form is a sequencing artifact, particularly given the frameshifted/truncated Nucleocapsid.
BA. 2 has only recently been introduced into the geographic region.

Croatia: 12175 sequences

With thanks to the sequencing teams in Croatia and Slovenia for sharing their data.

Insertion S $212+$ SGR in BA. 2 is found in only Denmark, and though found at a very low level it is increasing locally

BA. 2 + 212SGR: Found only in Denmark, at very low but increasing levels

Denmark

Translation
$10 \quad 2$

LANL Alignment, amino acid changes relative to BA. 2
+212SGR

While this BA. 2 insertion is still rare, it is interesting as Omicron is sampling indel variants in this region, and other variants have also carried three amino acid insertions in this region:

Summary of past insertions in this region

BA.1: +214 EPE	Global transition
BA.1: loss of 214 insertion	May be a sequencing artifact
BA.1: +214 EPE change to +214 GAR	~ 5000 times
BA. $:+212$ SGR	~ 100 times

Other lineages with 212-215 insertions
B.1.214.2 +214 TDR
A.2.5. +214 AAG (+ D215Y)
-- Belgium, France ~ a thousand
-- US, central America, a few thousand

[^0]: Many chimeric sequences are evident among Omicron variants. These include (i) chimeric stretches of either ancestral or Delta sequence in an Omicron backbone, (ii) Omicron BA. 1 in a BA. 2 backbone, or (iii) BA. 1 chimeric stretches in Delta backbones. While these chimeric sequences are likely to be in vitro artifacts, it is also possible that some may reflect an actual in vivo recombination event. We include in this update a small number of examples of (i) the most common forms of chimeras among Omicron samples, and (ii) several that would be particularly interesting if they were indeed found to be biological in origin. These examples are highlighted in this document, and also included in the LANL variant spreadsheet and fasta files, to alert people to their presence and provide illustrative examples.

